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Spikes not slots: noise in neural
populations limits working memory

Paul M. Bays

UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK

This opinion article argues that noise (randomness) in
neural activity is the limiting factor in visual working
memory (WM), determining how accurately we can
maintain stable internal representations of external
stimuli. Sharing of a fixed amount of neural activity
between items in memory explains why WM can be
successfully described as a continuous resource. This
contrasts with the popular conception of WM as com-
prising a limited number of memory slots, each holding
a representation of one stimulus - | argue that this view
is challenged by computational theory and the latest
neurophysiological evidence.

Deterministic and stochastic views of WM

WM refers to the ability of the nervous system to actively
internally maintain information over brief intervals [1-4].
It is considered an essential component of most complex
behaviours and is closely linked to general intelligence.
Critically, WM is strongly limited in its ability to hold
multiple representations simultaneously, constraining the
complexity of mental operations. In vision, two classes of
explanation have dominated attempts to account for this
limit.

The first class proposes that the limit is due to a
deterministic mechanism: there is a fixed maximum num-
ber of representations that can be held in memory at one
time; once this limit is reached, further items cannot enter
memory [5—7]. These models draw support from theoretical
studies of synchronised neural activity [8,9] and imaging
studies claiming to show plateaus in the activation func-
tion at a particular number [10,11] (see [3] for a critical
review). The classic deterministic account of visual WM is
the ‘slot’ model, which posits three or four independent
memory slots, each holding a detailed representation of
one visual object [6].

The second class asserts that the limit has a stochastic
mechanism: representations in memory become increas-
ingly variable as their number increases, until they can no
longer be distinguished from random noise [12—-19]. These
models find support in the inherent variability of neural
activity [20,21], and evidence from single-neuron recording
and fMRI decoding studies [22—24]. In vision, the stochas-
tic (see Glossary) view is exemplified by the ‘resource’
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model, which proposes that a limited supply of a represen-
tational medium is continuously distributed between visual
objects; items that receive more resource are stored with
less noise [16—19]. Several ‘hybrid’ models have also been
suggested, combining elements of both slot and resource
accounts [25-27].

Crucial evidence favouring stochastic models has come
from examining the distribution of errors in analogue
recall tasks. A typical task, testing memory for orientation,
and the observed distributions of error are shown in
Figure 1A,B (data from [28]; similar distributions have
been obtained for other visual features, e.g., colour and
motion direction [15,16,18,29]). The first important obser-
vation is that variability (the width of the distribution)
increases steadily with the number of items in the memory
array (Figure 1B,C). The relationship between variance
and set size is well described by a power law (appearing

Glossary

Analogue recall task: an experimental task in which an observer is required to
select the value of a remembered stimulus feature from a continuous space of
possibilities.

Delay period: the interval in a WM task between presentation and test, during
which items must be maintained in memory.

Feature tuning: tendency of a visual neuron to fire maximally in response to
stimuli with a particular visual feature, for example, a particular orientation.
The full relationship between firing rate and feature value is described by
tuning function of the neuron.

Gamma oscillation: high-frequency (30-100 Hz) rhythmic neural activity.
Kurtosis: a measure of the shape of a probability distribution, specifically
‘peakedness’ of the distribution in comparison to the normal distribution.
Lateral inhibition: the ability of an excited neuron to reduce the activation of
other functionally similar neurons within its local environment.

Misbinding: an incorrect recombination of visual features belonging to two or
more different objects. For example, recalling a red tractor when you actually
saw a red car and a green tractor.

Neural oscillation: large-scale rhythmic activity in the nervous system,
resulting from synchronisation of neural firing patterns.

Normal distribution: a bell-shaped continuous probability distribution. Sums
or averages of random variables drawn from independent distributions are
typically normally distributed. The normal distribution in a circular space is
called the von Mises distribution.

Normalisation: rescaling a set of values to have a particular common
magnitude.

Poisson process: a process that generates events independently at random
with a particular mean rate. The spiking activity of a neuron can be
approximated by a Poisson process.

Power law: a relationship in which one quantity varies as a power of another,
y = ax". A power law with exponent n = 1 describes a linear relationship.

Set size: the number of distinct items presented for memorisation in a WM
task.

Signal-to-noise: the ratio of meaningful signal to background noise in a source
of information.

Spatial selectivity: tendency of a neuron to fire only in response to stimuli
within a particular region of space (its receptive field).

Stochastic: partly or wholly unpredictable/random.

Theta oscillation: low-frequency (4-7 Hz) rhythmic neural activity.
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Figure 1. Errors in working memory (WM) reflect noise in neural coding. (A) An analogue report task, in which participants adjust a probe stimulus to match the orientation
recalled at the same location in the memory array. (B) The distribution of responses around the true orientation changes as a function of the number of items in the memory
array. (C) Error variability (black) increases monotonically with the number of array items. Curves show predictions of the population coding model (red; [28]) and slots +
averaging model (blue; [27]) with best-fitting parameters. (D) Kurtosis (black) measures deviations from normality of error distributions. Curves as in (C). (E) The population
coding model. Each stimulus is encoded by a set of orientation-selective neurons with bell-shaped (normal) tuning functions. Normalisation operates across the whole
population, scaling summed activity to a fixed level. Neurons generate spikes according to a noisy Poisson process, and recall is modelled as maximum likelihood (ML)
decoding of the spiking activity over a fixed time window. (F) Error distributions predicted by the population coding model with ML parameters (compare with B). Adapted

and reprinted from [28], with permission from the Society for Neuroscience.

linear on log-log axes as in Figure 1C) and there is no
evidence for any abrupt discontinuity as might be expected
on reaching a deterministic limit. This observation is at the
heart of stochastic models of WM and appears incompati-
ble with the classic deterministic view, which predicts no
changes in variability so long as all items are stored, that
is, until the fixed limit is exceeded.

The second key observation is that WM error distribu-
tions deviate significantly from the familiar normal distri-
bution; in particular, the distributions have excess kurtosis
(Figure 1D) — they are strongly peaked with long tails. This
observation is important because mathematical models in
psychology and neuroscience typically assume that inter-
nal variables have noise that is normally distributed. On
this assumption, the observed deviations from normality
have been interpreted variously as evidence for random
‘guessing’ [27] or variability in the precision of memory
representations [18,30].

A different perspective on these observations is obtained
by considering how visual features are represented in the
nervous system. Simple visual features, such as orienta-
tion, are encoded in neural activity by population codes
(Box 1). A recent study [28] has shown that stimulus
estimates obtained by optimal decoding of a noisy popula-
tion code have non-normal distributions of the type ob-
served in WM experiments (Figure 1E,F). According to this
model, the stimulus features in the memory array are
encoded in the firing rates of a population of neurons with
spatial selectivity and feature tuning. The population ac-
tivity is normalised, meaning that the total activity level
(sum of firing rates) remains constant across changes in set
size. The activity pattern persists once the memory array is
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removed, with neurons firing stochastically according to a
Poisson process.

Recall of a probed item is modelled as maximum likeli-
hood decoding (Box 1) of the persistent spiking activity over
a fixed time window. Because of the noise in spiking activity,
this estimate exhibits variability around the true value; the
fewer spikes available to decode, the greater the variability.
Because the population as a whole is normalised, the activi-
ty coding for each memory item declines with increasing set
size. This simple model accurately reproduces the power
law relationship between variance and set size observed in
experiments (red line in Figure 1C). Furthermore, estimates
decoded from a tuned population are not in general normally
distributed, and the specific deviations from normality
expected fit those observed in experiments (red line in
Figure 1D).

Slots and resources

In the population coding model [28], total spiking activity
is limited due to normalisation, and is distributed (shared
out) between visual items; in this way, the model provides
a plausible biological basis for the concept of a limited WM
resource. Neural activity can be selectively allocated to
stimuli with the greatest behavioural priority, and this
quantitatively reproduces empirical observations of en-
hanced WM precision for such items, as well as correspond-
ing costs for non-prioritised stimuli [17,31,32].

Can slot-based models also account for WM error dis-
tributions? An influential study [27] proposed a hybrid
model, the ‘slots + averaging’ model that claimed to fit
WM errors. The slots + averaging model modifies the
classic slot model to allow multiple slots to be allocated



Box 1. Population coding
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Population coding is a method of encoding information in the com-
bined activity of a pool of neurons [61,62]. The firing rate of each
neuron is determined by a tuning function (Figure IA) with a peak at a
‘preferred’ value that differs from neuron to neuron. This coding
strategy is common throughout the nervous system, including visual
cortex, where the encoded values are stimulus features such as
orientation, and motor cortex, where values correspond to motor
outputs such as an intended movement direction [63,64].

Population coding has the advantage that it is robust: because the
encoded information is distributed over many neurons, damage to
any one neuron has relatively little effect on the representation.
Theoretical schemes have been proposed whereby population codes
can store multiple inputs and represent uncertainty in the input
[65,66]. Methods also exist by which information in a population
code can persist over time (Box 2), and persistent activity associated
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with WM in cortex, for example in prefrontal neurons, exhibits po-
pulation coding [67].

Neural firing is probabilistic, thus information encoded by neurons
can in general only be recovered imperfectly; because outputs can be
averaged over many neurons, population codes help reduce this
uncertainty. A particularly important method of decoding, which is
in many situations statistically optimal, is maximum likelihood (ML).
ML decoding [68] consists of identifying the represented value for
which the observed activity was most likely to occur. This is also the
value at the peak of an idealised (noiseless) response function that best
fits the observed firing rates (Figure IB). Biologically plausible methods
have been identified for obtaining ML estimates from population
codes [69,70]. However, it is unclear whether decoding takes place
explicitly in the brain, or is only implicit in the transformation between
variables, for example, from sensory to motor coordinates [71].
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Figure I. Standard model of population coding. (A) The mean activity of a neuron in response to an input (e.g., the orientation of a visual stimulus) is determined by its
tuning function, which is typically bell shaped. Neurons within a population differ in their preferred stimulus value, that is, the value that elicits their maximum firing
rate. (B) Population activity (black filled dots) plotted against the preferred stimulus value of each neuron. In any finite time period, the spike rate will be a noisy
approximation to the idealised value set by the tuning function. Maximum likelihood finds the idealised output (blue curve) that most closely fits the actual activity [61].

to the same visual item. According to this proposal, the
brain maintains multiple independent representations of
the same object, each with normally distributed error, and
averages them together at recall. As a result, an item that
is allocated more slots is recalled with lower variability. In
this regard, the slots + averaging model mimics a resource
model, with the slots acting as a shared resource (although
a quantized one) that is distributed between items; how-
ever, it also invokes a deterministic limit: no more items
can be stored than there are slots.

The slots + averaging model reproduces the increase in
variability with set size observed in experimental data
(blue line in Figure 1C). It also predicts some deviations
from normality as a result of the mixing together of
responses to items with different numbers of slots assigned
to them. In particular, estimates of an item that receives no
slots will be randomly (uniformly) distributed, which is
consistent with the presence of long tails in error distribu-
tions at higher set sizes. However, the response distribu-
tions predicted by this model do not in fact correspond to
those observed in experiments, as indicated by the drastic
failure to reproduce the kurtosis of responses (blue line in
Figure 1D). In particular, the slots + averaging model —
unlike the population coding model — fails to predict the
substantial non-normality of errors for small numbers of
items, including one item [28]. Currently, no model incor-
porating a deterministic limit has been shown to reproduce

the characteristic deviations from normality observed in
WM errors, and this is an important challenge for propo-
nents of this view.

Evidence for normalisation

Normalisation is an important component of the popula-
tion coding model of WM: it predicts a decline with set size
in the strength of the neural signal associated with each
item, and hence explains why variability increases with
the number of items. Initially identified in primary visual
cortex, normalisation has been described as a canonical
computation in the brain, implemented through varied
mechanisms in multiple neural systems [33,34]. The com-
mon principle is that the responses of individual neurons
are divided by the summed activity of a larger population of
neurons, the ‘normalisation pool’.

In many of the classic examples of normalisation (e.g.,
[35]), this pool is relatively local, that is, the response of a
neuron is divided by the summed activity of neurons with
similar tuning functions or receptive fields. In the popula-
tion coding model, in contrast, normalisation operates
over all stimuli held in memory. There is growing evidence
for such broad normalisation in multiple brain regions.
For example, lateral intraparietal (LIP) neurons, which
become active when a saccade target is in their receptive
field, have been shown to decrease their firing rate as
the number of potential targets increases, even if the
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Figure 2. Evidence for normalisation in working memory (WM)-related neural activity. (A) Firing rate of an example prefrontal neuron with persistent WM activity. Firing
rate declines with increasing memory load, whether the stimulus in the receptive field corresponds to a preferred (unbroken lines) or non-preferred (broken lines) feature of
the neuron. (B) Correspondingly, the information about a stimulus that can be extracted from delay-period neural activity declines as the number of items increases,
consistent with normalisation. (A,B) Adapted and reprinted from [22], with permission from the National Academy of Sciences. Data shown are for lateral prefrontal cortex
(LPFC); similar results were found in frontal eye field (FEF) and lateral intraparietal (LIP) areas. Note that significant differences between two and three items were observed
only in the late phase of the delay in the LPFC; however, this was not a consistent observation across brain areas. (C) An fMRI study [24] decoded signals recorded during a
spatial WM task (top row). When participants were instructed to remember the location of one of two stimuli, strong delay-period activity was observed corresponding to
the remembered stimulus location only (middle row). When both stimuli were to be remembered, activity was observed corresponding to both locations, but with
significantly reduced amplitude at each. Adapted and reprinted from [24], with permission from Elsevier. Data shown are from area V4A; similar results were found

throughout visual and posterior parietal cortex.

targets are widely spaced [36-38]. Similar results are
found for premotor neurons as the number of possible
targets for a reach increases [39].

One study [22] recorded from neurons in primate frontal
and parietal cortex that were active during the delay
period of a colour WM task. Neurons were observed that
decreased their stimulus-specific firing rate as the number
of competing stimuli increased (example in Figure 2A).
Overall, the informativeness of neural activity about the
stimuli declined with increasing memory load (Figure 2B),
consistent with a decrease in neural signal-to-noise due to
normalisation. Interestingly, both behavioural and neural
responses indicated that items competed for representa-
tion only with others in the same hemifield; a small beha-
vioural advantage of bilateral presentation has also been
demonstrated in humans [40], consistent with a similar
(although much weaker) division of resources.

A recent study [24] used an image reconstruction tech-
nique to recover stimulus information from fMRI signals
recorded during the delay period of a spatial WM task.
Spatial locations of multiple stimuli held in memory were
successfully decoded from signals in occipital, parietal,
and frontal sites (Figure 2C). In occipital and posterior
parietal areas, an increase in the number of locations in
memory from one to two resulted in a decrease in the
BOLD amplitude associated with each stimulus represen-
tation. This represents the most compelling evidence yet
for a broad mechanism of normalisation underlying WM.

Decay of WM representations

WM variability increases the longer items are maintained
in memory [41,42]. The rate of this decay can be manipu-
lated by retrospective cues that direct attention to partic-
ular items in memory. A cued item becomes relatively
resistant to decay, but at a cost to uncued items, whose
rate of decay increases [42]. Similarly, decay rate increases
with set size [43]. These observations are consistent with
allocation of a limited neural resource to memory mainte-
nance.
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What is the neurophysiological basis for WM decay?
Within the population coding framework, one possibility is
that the neural activity corresponding to each stimulus
declines in amplitude with time. However, the population
coding model does not describe how this activity is sus-
tained or give a basis for its decay. Instead, theoretical
studies have tended to focus on the possibility of diffusion
within an attractor network (Box 2). A continuous attractor
network maintains stimulus information in a self-sustain-
ing pattern of activity (i.e., a persistent population code),
which can be visualised as a ‘bump’ of activity centred on
the true stimulus value.

Over time, this bump diffuses (follows a random walk)
through the space of possible stimulus values. As a result,
recall variability increases steadily with time.

A recent study [44] found evidence for such random
diffusion in prefrontal neurons recorded during a spatial
WM task. As predicted by diffusion, tuning functions com-
puted from responses at the end of the delay period were
biased in the direction of the error in the monkey’s re-
sponse. Because drift of the activity bump towards one
parameter value necessarily implies drift away from other
values, the diffusion model predicts that neurons with
preferred directions falling either side of the target direc-
tion will be anticorrelated: this was confirmed. Neither of
these results were predicted by a model with declining
amplitude instead of diffusion.

A theoretical study of diffusion within attractor net-
works [45] has shown that the rate of diffusion is directly
related to the precision with which an ideal observer can
decode the state of the network. Thus, factors that increase
the variability of retrieval from a population code, such as
decreased mean firing rate, are also expected to increase
the rate of diffusion. It follows that normalisation within
an attractor network could account for resource-like beha-
viours, including the increase of decay rate with number of
items.

One simulation study of an attractor model with
normalisation [46] highlighted other behaviours that



Box 2. Attractor models

An attractor network [72,73] is a neural circuit for which certain
patterns of activity are stable and self-sustaining. Regardless of
how the network is initialised, activity will settle into one of these
stable patterns or ‘attractor states’. Such behaviour arises naturally in
computational models of networks with recurrent excitation and is
considered a possible basis for persistent activity underlying WM.

A discrete attractor network [74,75] has one or more fixed points of
attraction (Figure IA). Such a network can maintain the memory of a
categorical variable, with each fixed point corresponding to a differ-
ent discrete value (e.g., a letter of the alphabet). Discrete attractor
networks can carry out a type of pattern completion: if the network is
initialised with an input that does not correspond exactly to one of the
categories, the activity will shift to the nearest stable state corre-
sponding to the closest-matching category.

Continuous attractor models [76-78] extend this principle to net-
works with a continuum of attractor states. For example, memory for
a continuous variable such as orientation can be stored in a ‘ring
attractor’ network (Figure IB), where every possible orientation cor-
responds to a different point on the ring of stable states. Similar to
discrete attractors, these networks are relatively resistant to internal
noise, in that the system rapidly corrects for perturbations away from
the attractor line. However, perturbations along the attractor are not
corrected, making the network susceptible to random drift (‘diffu-
sion’) in its stored variable.

(A)
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Figure . Attractor networks. (A) Energy landscape and state-space representation
of a discrete attractor network with two fixed points (red dots). Here, two state
variables (x and y axes) stand in for the high-dimensional state of activity in the
network. Activity evolves over time (arrows) to settle in the nearest of the fixed
attractor states. (B) Representation of a ring attractor network. Activity is stable
anywhere on the continuum of attractor states (red line).

could contribute to WM decay. When multiple stimulus
values were stored as separate activity bumps within a
single attractor network, individual bumps were found to
spontaneously fade away, and neighbouring bumps were
observed to probabilistically merge together. The sponta-
neous loss of information of a whole item was compared
with slot models of WM, however, it should be emphasised
that fade out and merging in this model were probabilistic,
occurred over the course of maintenance, and did not occur
with frequencies appropriate to emulate a limit at a fixed
number of items. Unlike diffusion, there is no clear neuro-
physiological evidence for these behaviours. While an
important development, the normalised attractor model
has a number of issues as a model of WM. In particular, as
a result of merging, this model is unable to store two
similar stimuli (e.g., two slightly different colours) as
distinct entities. This is because, unlike the population
coding model, there is no mechanism for associating fea-
tures with locations. A corollary is that the model cannot
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plausibly simulate retrieval of a probed stimulus, as is
needed to describe behaviour on analogue recall tasks.

Recall latency

It takes time to retrieve information from WM, and the
time taken (latency) increases with the total number of
stimuli in memory [43]. Examination of retrieval times
reveals that latency has a strongly skewed distribution,
but the reciprocal of latency has an approximately normal
distribution. This is characteristic of an accumulation
process, in which the response is triggered by the threshold
crossing of a variable with a normally distributed rate of
rise. While early work on such models was in the context of
WM [47], they have since become more closely associated
with the timing of sensory judgements [48], where there is
substantial neurophysiological evidence relating decision
latency to cells whose activity drifts towards a boundary
value, with the rate of drift determined by the strength
(signal-to-noise) of the stimulus input.

In WM retrieval, the accumulation would be of internal
evidence provided by a neural population coding for the
stimulus. The slower retrieval with larger set sizes is
consistent with reduced signal-to-noise and hence with a
normalisation account of this storage mechanism; so is
evidence of faster responses for prioritised stimuli, and
corresponding latency costs for non-prioritised items
[43]. While this initial evidence is compatible with the
stochastic view, predictions of deterministic models for
analogue recall latencies are yet to be elucidated: prelimi-
nary consideration suggests a two-component mixture of
report times, corresponding to separate latency distribu-
tions for items in and out of memory. One important
consideration for any model is that decay of the WM
representation is expected to continue during the course
of retrieval. As a result, it may become suboptimal to
accumulate evidence over long periods [45], possibly plac-
ing an upper limit on latency.

Failures of binding

Binding refers to the information that groups different
visual features together into objects. In perception, binding
errors (‘illusory conjunctions’) are rare and primarily ob-
served when stimuli are unattended or briefly glimpsed
[49,50]. In contrast to this, misbinding in WM has a
significant impact on our ability to accurately recall what
we have seen. In analogue recall tasks (Figure 1A), binding
errors are observed as clusters of responses around the
values of other, unprobed items in the memory array
[16,31,51-54]. Binding errors increase in frequency with
increasing set size.

A long-standing proposal [8,9,55-57] is that binding is
represented in the brain by synchronised firing of neurons
selective for individual visual features (Figure 3A).
According to this model, neurons corresponding to features
belonging to a single object all fire at the same phase of a
common neural oscillation, typically assumed to be in the
theta range. This provides a mechanism for linking activity
in disparate brain regions specialised for different visual
features. To decode this information, a mechanism would
need to be sensitive to the relative timing of spikes arriving
from different inputs, perhaps by taking advantage of the
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Figure 3. Models of binding and misbinding in working memory (WM). (A) Binding by synchrony. Neurons in two brain regions synchronise their activity to a common
waveform (e.g., theta rhythm) in order to store in memory (inset) a red horizontal bar and a green oblique bar. A red-selective neuron in colour region 1 fires spikes in the
same phase as a horizontal-selective neuron in orientation region 2; likewise, activity of a green-selective neuron is matched with an oblique-selective neuron. Spike timing
is probabilistic, and errors of binding (e.g., recall of a green horizontal bar) arise from mistimed spikes. (B) Binding by conjunction. Stimulus information is stored in the
activity of a mixed population of neurons, comprising colour-selective neurons (response fields shown top-left), orientation-selective neurons (top-right), and conjunction
neurons that are activated only by a specific pairing of colour and orientation (bottom-left). Optimal decoding of the population activity recovers the stimulus values and
their binding (decoding probability shown bottom-right). Misbinding occurs probabilistically because of noise in firing rate.

rapid depolarising effect of coincident synaptic inputs
[58]. Binding errors could arise because spike timing is
probabilistic and hence some activity will take place in the
‘wrong’ phase, creating spurious synchronisations.

An influential study [8] suggested that a deterministic
capacity limit could arise from a limit on the number of
distinct phases available in the background oscillation.
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They proposed that each item is associated with a particu-
lar cycle of a high-frequency gamma oscillation
phase-locked to a slower theta rhythm. They illustrated
this concept with a fixed limit of seven items (the prevailing
estimate of WM capacity at the time), although the broad
range of frequencies typically associated with gamma
and theta rhythms would allow almost any number to



be selected as the limit. A similar model [9] proposed that
the limit on distinct phases arose from mutual inhibition
between assemblies of neurons representing different
objects. Rather than a deterministic limit, this model
predicted that the number of distinct phases fluctuated
from trial to trial, with a mean that again depended on the
choice of model parameters.

Critically, because misbinding can only occur between
items in memory, an oscillation-based model with a limit
on the number of items stored makes the strong prediction
that, once the limit is reached, any further increase in set
size will not increase the frequency with which binding
errors occur. No such plateau in misbinding frequency is
observed experimentally [16].

Despite the longevity of the idea, direct neurophysiolog-
ical support for binding-by-synchrony is still lacking. It has
also not been established how the correct synchronisations
between disparate brain regions would be initialised by
sensory input, particularly when stimuli are presented
simultaneously. An alternative view [59] is that binding
information is maintained by specialised neurons that are
selective for the conjunction of elementary visual features.
A ‘mixed’ population code (Figure 3B) includes both con-
junction neurons and neurons selective for single features.
For example, the population might include neurons that
fire in response to a red stimulus, neurons that respond to a
horizontally oriented stimulus, and conjunction neurons
that respond only to a red horizontally oriented stimulus.
Similar populations have been observed in the brain, for
example, in area V2 [60].

In this model, decoding can be achieved by standard
methods (e.g., maximum likelihood) and binding errors
occur for the same reason as variability in recall of a single
feature: noise in activity of the population of neurons. This
model has been shown to reproduce the qualitative pattern
of binding errors observed in analogue report tasks, includ-
ing the monotonic increase in misbinding with set size [59].

Concluding remarks

Multiple aspects of WM performance degrade smoothly
and continuously with increasing memory load, including
recall precision, retrieval latency, decay rate, and binding
fidelity. In each case, there is evidence that individual
items can be afforded protection against degradation, but
only at a cost to other unprioritised stimuli. These results
are consistent with the characterisation of WM as a limited
resource, and difficult to reconcile with the proposal of a
deterministic limit at three or four items. More specifically,
the evidence in each case appears consistent with the flexi-
ble allocation of a limited quantity of neural signal between
memorised stimuli. As the neural signal decreases, repre-
sentations become increasingly dominated by noise, and
this accounts for the degradation in WM fidelity.

The inherent stochasticity of neural activity means that
theoretical models based on neural principles are broadly
incompatible with a deterministic limit on number of items
stored. While some models are capable of generating ran-
domly fluctuating limits, the principles underlying them,
such as spontaneous fade out of activity bumps, do not have
clear support in neurophysiological observations. No model
predicts a limit specifically in the three- to four-item range.
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Box 3. Outstanding questions

e How can the stochastic view of WM be extended to memoranda
that are categorical in nature, for example, letters, shapes, or high-
level objects? Can discrete attractor networks (Box 2) provide a
useful description?

e How are time intervals and the temporal order of events repre-
sented in WM?

e Can the population coding model of visual WM be adapted for

other modalities, for example, tactile or auditory WM?

Are there limits on flexible allocation? A system based on binary

spiking events could be practically limited in how finely activity can

be distributed between representations. Furthermore, under cer-

tain conditions it may be statistically optimal to limit allocation to a

subset of available items, rather than store all with very low

precision. Such effects might be captured by a stochastic upper

bound, as in [54].

What is the neurophysiological basis for the representation in WM

of ensemble statistics [79], such as the average colour of a group of

objects?

What is the mechanism underlying the broad normalisation ob-

served in WM-related activity, and how is it distinct from those

proposed for perception and attention [33]? Possible mechanisms
include lateral inhibition within posterior areas, or a resource-
limited descending signal from, for example, prefrontal cortex.

L]

In contrast to this, the mechanisms of graded degradation
discussed here are all based on established neurophysio-
logical principles: population coding [61], normalisation
[33], diffusion [44], and accumulation-to-bound [48]. None-
theless, these links between behavioural observations and
neurophysiology are to varying degrees speculative or
theoretical at this time, and further computational, beha-
vioural, and neurophysiological studies will be required to
establish them firmly. Some outstanding questions are
listed in Box 3.
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