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Impulsivity is often characterized by rapid decisions under risk, but most current tests of decision-making do not
impose time pressures on participants’ choices. Here we introduce a new traffic lights test which requires people to
choose whether to program a risky, early eye movement before a traffic light turns green (earning them high rewards
or a penalty) or wait for the green light before responding to obtain a small reward instead. Young participants
demonstrated bimodal responses: an early, high-risk and a later, low-risk set of choices. By contrast, elderly people
invariably waited for the green light and showed little risk-taking. Performance could be modeled as a race between
two rise-to-threshold decision processes, one triggered by the green light and the other initiated before it. The test
provides a useful measure of rapid decision-making under risk, with the potential to reveal how this process alters
with aging or in patient groups.
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The study of decision-making has become the focus of
intense research efforts in cognitive neuroscience.
However, it is appreciated that there might be limitations
associated with existing naturalistic tasks used to identify
abnormal decision-making (Schonberg, Fox, &
Poldrack, 2011). For example, delay discounting
(Bickel, Odum, & Madden, 1999) or gambling tasks
(Bechara, Damasio, Tranel, & Anderson, 1998; Clark
et al., 2008; Murphy et al., 2009) have been extraordi-
narily useful in identifying departures from normal beha-
vior. But they might encourage probabilistic fallacies or
may not permit behavior to be dissected easily into its
contributory cognitive components (Aragues, Jurado,
Quinto, & Rubio, 2011; Schonberg et al., 2011). They
also allow participants to reflect upon the decision and
consider possible outcomes, without any time pressure.

By contrast, impulsive behavior in pathological groups
is often characterized by rapid decision-making under
risk (Moeller, Barratt, Dougherty, Schmitz, & Swann,
2001). Impulsivity may be conceptualized as a willing-
ness to decide before all the required information is avail-
able, and some existing tests probe this in patient groups,

albeit for decisions made in the order of many seconds
rather than milliseconds (e.g., Clark, Robbins, Ersche, &
Sahakian, 2006). But even in healthy humans, under
certain circumstances, early decisions can carry a survival
advantage, as when deciding quickly might be life-saving
even if associatedwith a risk ofmaking thewrong choice.
Such an ability to make rapid decisions and negotiate risk
early might be termed functionally useful anticipation (cf.
Dickman, 1990). However, in other scenarios, a “wait and
see” approach is better, particularly if early decisions
repeatedly lead to poor outcomes.

Here we present a new method that provides a
measure of decision-making under time pressure. Our
task encouraged functionally useful anticipation but
also punished erroneous decisions that were made too
early. We used fast eye movements––saccades––as our
response measure. The saccadic system has begun to
provide a useful framework for studying decision-
making in humans as well as monkeys (Glimcher,
2003; Hutton, 2008), and is sensitive to cognitive def-
icits in patient groups (e.g., Hodgson et al., 2007).
Saccades are well described by linear rise-to-threshold

COGNITIVE NEUROSCIENCE, 2012, 3 (1), 52–61

Correspondence should be addressed to: Masud Husain, UCL Institute of Cognitive Neuroscience, 17 Queen Square, London WC1N 3AR,
UK. E-mail: m.husain@ion.ucl.ac.uk

We thank our participants and Angela Yu for help with data collection. This study was supported by the Wellcome Trust and the NIHR/CBRC
at UCLH/UCL.

© 2012 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business
www.psypress.com/cognitiveneuroscience http://dx.doi.org/10.1080/17588928.2011.613988



models of “evidence accrual” in the lead up to the
response being triggered; that is, the decision
(Carpenter & Williams, 1995).

In our new traffic lights task, individuals make
saccadic decisions under time pressure. Risk is intro-
duced by varying the GO onset time so it is not pre-
dictable. The rules encourage participants to make
functional anticipatory responses by disproportio-
nately rewarding fast decisions that lead to saccades
soon after the GO signal. Thus, anticipating GO is
encouraged. However, saccades executed too soon,
prior to GO, are punished. Ideal performance incorpo-
rates fast reaction times based upon an anticipatory
strategy. But individuals perform badly if they are too
early or, conversely, if they are too slow.

METHODS

Traffic lights task

Young subjects consisted of 45 healthy volunteers (mean
age ¼ 20; 22 women); older participants comprised 15
healthy volunteers (mean age ¼ 64; 9 women).
Participants were told that their main aim was to win as
much money as possible. They were asked to make rapid
eye movements from a “traffic light” (colored disk, dia-
meter 3�) to a target cross (3� � 3�), both presented on a
computer monitor. The traffic light and target were 10�

either side of screen center (Figure 1). Subjects were
requested to fixate the traffic light stimulus while it turned
from red (duration 1000 ms) through amber to green.

The timing of the GO signal (green light) onset was
not predictable: it varied from trial to trial, with the
duration of the amber light randomly selected from a
normal distribution (mean 750 ms, SD 125 ms;
Figure 1B). Participants were asked to make their 20�

saccade to the target cross as quickly as possible and as
soon after the GO signal as possible. They had a max-
imum of 1000 ms in which to respond.

The reward (R) for a successful saccade was calcu-
lated by an exponentially decaying discounting func-
tion in the form

R ¼ Ae�ðt�t0Þ=τ

where A ¼ 150, τ ¼ 100, and t represents the reaction
time from green onset (t0 ) in milliseconds.

This steepdiscounting function (Figure1C)generated
disproportionately high rewards for short saccadic reac-
tion times (SRTs).Saccadeswith latenciesof400msafter
green light onset were rewarded with only 2.8 pence (p),
while SRT ¼ 200 ms generated 20.3 p. Saccades with
shorter latencies than thiswere farmorehighly rewarded;

for example, a responsewithSRT¼50ms led toa reward
of 91.0 p.But tomakehigh rewards, subjectswould have
toanticipategreen light onset, because saccades typically
take ,200 ms to program (White, Eason, & Bartlett,
1962). In other words, they would have to make a deci-
sion––take a risk––to program a saccade before the onset
of the GO signal.

However, saccades that were actually made before the
green light incurred a small, fixed penalty of 10 p. Error
trials were accompanied by an unpleasant audible beep
and a visual warning, “STOP POLICE! Fine £0.10.”
Subjects received a payment equivalent to their mean
reward for 50 trials; overall, they completed 10 blocks
of 50 trials. To perform well, participants therefore
needed to make as many rewarded anticipations as pos-
sible, while keeping errors to a minimum. They had to
make a choice of whether to stay (wait longer) or go and
risk a small penalty for the possibility of a large reward.

On their gaze arriving at the target cross (fixation
tolerance 2�), subjects received both aural and visual
feedback on their performance. They were shown the
reward (in pence), and a running total beneath (in
pounds sterling). For rewards of less than 20 p, parti-
cipants heard a “ping.” For rewards of 20 p or more,
they heard a more rewarding “kerching!” sound. The
target cross was then replaced by a red light (circle),
and a target cross now appeared on the opposite side of
the screen to begin the next trial. To perform optimally,
subjects should therefore make as many anticipations
as possible, but as few errors as possible.

Apparatus and data acquisition

An EyeLink 1000 infrared video-based eye tracker
(SR Research Ltd, Kanata, Ontario, Canada) recorded
eye position at 1000 Hz. Task stimuli were displayed
on a 22-inch CRT monitor (1024 x 768 pixels, refresh
rate 150 Hz) at 60 cm. Stimuli were programed in C/
C++ and run on a PC. The eye tracker was controlled
by a separate PC networked to the stimulus/display
PC. Eye position data were acquired in real time and
exported into MATLAB R2008a (The Mathworks,
Natick, Massachusetts, USA) for analysis.

Control SRT task

Young participants were also tested on a control, non-
rewarded SRT task. In this paradigm, the red light was
followed immediately by green, with no amber light in
between. Red light duration was chosen at random
from a uniform distribution in the range 500–1000 ms
(mean 750 ms). This task allowed us to obtain response
distributions for purely “reactive” saccades––
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programed in response to green onset, without antici-
pation of the GO signal.

RESULTS

Saccadic distributions in young controls

Typical SRT tasks produce latency distributions with a
single “quasi-normal” distribution which is positively
skewed. Since the skew can be removed by replotting
on a reciprocal time axis, the distribution is given the
name “recinormal” (Carpenter & Williams, 1995).
Performance on the control SRT task produced such a
distribution (Figure 2) with a mean reaction time of 335
ms (SD 148 ms) and median of 300 ms for young
volunteers.

On the traffic light task, however, the overall dis-
tribution plotted with respect to green onset was bimo-
dal (Figure 3), consisting of two distinct distributions: a
“late” distribution which corresponded well to the dis-
tribution of saccades on the SRT task (cf. Figure 2) and
an “early” distribution of saccades. Plotting saccadic
distributions as a function of amber duration revealed
that, as amber duration increased, the frequency of
early saccades increased, while that of late saccades
reduced (Figure 4). The peak latency of the later dis-
tribution remained essentially invariant across amber
durations.

Given that saccades take ,200 ms to program
and execute (White et al., 1962), the early popula-
tion of saccades might be considered anticipatory in
nature, while the later population might be consid-
ered reactive––responses triggered by the onset of

Figure 1. The traffic light task. (A) Subjects were instructed to move their eyes as quickly as possible from a traffic light stimulus to a target
cross. Saccades made after the green light were rewarded, but those executed before the green light incurred a small penalty. (B) Amber duration
was randomly selected on each trial from a normal distribution (mean 750 ms, SD 125 ms). (C) Reward was computed by a steep discounting
function of SRT. The biggest reward was for saccades that coincided with green light onset, but such saccades would have to been programed
before the green light.
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the green light. However, for any given saccade, it is
not possible definitively to determine whether it
arose from the early or late population of responses.
We therefore modeled our data to enable us to
choose an appropriate “cut-off” time for counting
the number of “anticipatory” responses.

Linear rise-to-threshold model predicts
likelihood of saccades arising from
reactive and anticipatory distributions

The positively skewed, “recinormal” distribution of
saccades has been well modeled by Carpenter’s

Figure 2. Control saccadic reaction time (SRT) task response distribution for young controls. Participants showed a typical, positively skewed,
“recinormal” distribution of saccadic latencies. pdf ¼ probability distribution function.

Figure 3. Traffic light task response distributions for young controls. A bimodal distribution was apparent consisting of a population “early”
(anticipatory) saccades and “late” (reactive) saccades. The latter were of similar latency to those seen in the SRT task. pdf¼ probability distribution
function.
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LATER model (Carpenter & Williams, 1995).
Moreover, in tasks in which the saccade target might
be anticipated, distributions have been modeled by two
LATER units competing in a “two-horse race” (Story
& Carpenter, 2008). Such models assume that a deci-
sion threshold must be reached to initiate a saccade
(Figure 5). Reaching that threshold depends upon the
accumulation of evidence in favor of making the deci-
sion. In the traffic lights task, as time passes following
amber onset, there is increasing expectation of the
green light. This form of evidence is accrued slowly.
Once the green light comes on, however, there is 100%
evidence, and the GO signal therefore would be
expected to lead to rapid accumulation of evidence in
favor of generating a saccade.

To model the data from the traffic light task, we
assumed two processes, one triggered by the amber
light and the other by the green light. The distribution
of reactive saccades would be described by a rapid
rise-to-threshold process that is evoked by the appear-
ance of the green light. We further hypothesized that
anticipatory saccades, driven by an increasing expec-
tation of the GO signal, would be described by a
separate, slower, and independent rise-to-threshold
triggered by the amber light onset. Thus, we have

two rise-to-threshold processes competing to reach
decision threshold, and, according to this model, a
saccade is generated by whichever process is first to
reach threshold (Figures 5 and 6).

The likelihood of the first, slow-rising anticipa-
tory process reaching the threshold increases as
amber duration lengthens. For very short amber
durations, therefore, there is not sufficient time for
an anticipatory saccade to be generated, and the
green light triggers a rapidly rising reactive process
which reaches threshold first. Nearly all the sac-
cades for short amber durations would therefore
arise from the reactive distribution. By contrast, in
trials with long amber durations, many anticipatory
saccades occur because there is sufficient time for
the anticipatory process to reach threshold before
the reactive process is triggered.

Formally, the probability that a saccade has
occurred by time t following amber onset (i.e. the
cumulative probability distribution) is given by

PrðT � tÞ ¼ ΨAðtÞ þ ΨRðt � t0Þ � ΨAðtÞΨRðt � t0Þ

where ΨA and ΨR indicate cumulative recinormal dis-
tributions describing anticipatory and reactive

Figure 4. Saccadic response distributions varied with amber duration. Displaying the probability density function (pdf) according to the amber
duration in each trial reveals two important features of the task response. First, the longer the amber duration, the more likely is an early,
anticipatory saccade. Second, the latency of the reactive distribution is appears constant for all amber durations. Zero refers to green light onset.
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processes, respectively. Each distribution is parameter-
ized by a mean (μ) and variance (σ2) of the rate-of-rise,
and defined in terms of the standard cumulative normal
distribution Φ as follows, for t > 0:

Ψμ;σ2ðtÞ ¼ 1�Φ
1=t � μ

σ

� �

Anticipations, rewards, and errors

Weusedmaximum likelihoodestimation (Myung, 2003)
to obtain best-fitting mean and variance parameters for
each distribution (Figure 6). The model used four para-
meters: the mean and variance of the rate of the rise-to-
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Figure 6. Young volunteer data modeled as two linear rise-to-threshold processes. (A) Linear rise-to-threshold models predict simple saccadic
response distributions. (B) We used a model which incorporates two LATER units to estimate means and variances for both reactive and
anticipatory response distributions. In this case, saccadic latency depends upon the slope of each linear rising process (and the variability of the
slope of each process from trial to trial). For short amber durations, the reactive process, which is steep, will usually reach threshold first (denoted
by green line). For longer amber durations, however, the anticipatory process (amber line) triggered by amber onset may reach threshold before the
reactive process does. In this example, an error occurred because the amber-triggered process reached threshold before green onset. (C) Plotting
responses on reciprobit axes demonstrate the existence of the two linear rise-to-threshold processes, one starting at amber onset (anticipatory), and
the other in response to green onset (reactive). (D) The gradients and variabilities of these processes were estimated by maximum likelihood and
used to parameterize two separate LATER units to model the distributions.

Figure 5. How two LATER units might describe the observed data. It is assumed that a certain decision threshold must be reached to initiate a
saccade. This threshold may be reached through two forms of “evidence.”As time passes following the amber onset, there is increasing expectation
of the green light. This form of evidence is accrued slowly. Once the green light is lit, there is 100% evidence of the requirement for a saccade, so a
faster decision process is initiated. Depending upon the amber duration and prior knowledge of the amber duration distribution, one process will
win the race on any given trial. As these are biological systems, there is also noise (variability) in the rate of rise of each process. This results in a
recinormal distribution of saccadic latencies even in the presence of identical trial conditions.

RAPID DECISION-MAKING UNDER RISK 57



threshold process triggered by the amber onset and, simi-
larly, the mean and variance of the rate-of-rise of the
process triggeredby theGOsignal.Maximum likelihood
parameter estimates were obtained by the Nelder-Mead
simplex method (fminsearch in MATLAB).

Population data for all saccades are shown in the left
panels of Figure 7, with corresponding distributions pro-
duced by the model on the right. The data are further
decomposed into distributions for different amber dura-
tions in Figure 8, with real data on the left and model
performance using four parameters to the right. Note that
if thedistributions areplottedwith respect toamberonset,
one might get the impression that there was only one
distribution. However, plotting all the data with respect
to green onset or decomposing the results as a function of
amber duration (evenwhen plottedwith respect to amber
onset) reveals the bimodal distribution.

In the case of young subjects, our version of the
two-horse LATER model estimated a group-average
median response time for the reactive distribution of

289ms (SD 32ms) from green onset. We decided to use
a cutoff of less than 200 ms SRT to classify saccades as
being from the anticipatory distribution for several
reasons. First, this value corresponds to ,2.5 SD
from the reactive distribution mean as calculated by
the model, so it is significantly distant from the peak of
the reactive population of responses. Second, it is a
pragmatically useful cutoff for investigators to use,
and, third, because previous studies have established
that reactive saccades under “no-gap” conditions take
,200ms to execute (White et al., 1962). For the group,
the model estimates that 91% of saccades over 200 ms
from green onset would be from the reactive distribu-
tion, while 82% of saccades prior to 200 ms would be
from the anticipatory distribution. (If we use a cutoff of
185 ms, the corresponding values would both be 90%,
but for pragmatic purposes and ease of use in future
studies, we have kept to 200ms, as differences between
these cutoffs makes little material difference to the
overall pattern of findings discussed below.)

Figure 7. Saccadic response distributions and model distributions. Raw data (left panels) and modeled probability distributions (right panels)
derived from four parameters (gradient and variance for two rise-to-threshold processes) estimated bymaximum likelihood. Plotted with respect to
amber onset (a and b), there is a single, homogeneous distribution of saccades. However, plotted with respect to the green light onset, the true
bimodal distribution is revealed (c and d).
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When modeled individually, 200 ms was a mini-
mum of 2 SD below the median reactive response
time for each young subject. The group-average
median response time for the anticipatory distribu-
tion, now computed from amber onset, was 1344
ms (SD 52 ms). With the 200 ms cutoff, a total of
30.2% of young volunteers’ saccades were com-
puted by this model to be from the anticipatory
process. Just over two-thirds of these saccades
occurred between green onset and 200 ms follow-
ing it, comprising 21.1% (SD 11.1) of all saccades.
Thus, these saccades were highly rewarded.

Overall reward correlated highly with the percen-
tage of anticipatory responses (R2 ¼ 0.42, p < .05). A
weaker but still strongly significant negative correla-
tion between overall mean reaction time and reward
was also found (R2 ¼ 0.30, p < .05). Percentage errors
were not significantly correlated with overall reward
(R2 ¼ 0.041, p ¼ .18), but recall that errors were all
penalized by a small, flat loss of 10 p, regardless of how
early they were made with respect to the GO signal
onset. Overall, young volunteers made on average 17 p
per trial (minimum 7 p, maximum 28 p, SD 4.5 p).

Saccadic distributions in older controls

In contrast to the younger test subjects, older participants
did not produce very many anticipatory responses
(Figure 9). The saccade response distribution for this
group did not show a bimodal distribution when plotted
with respect to green onset. Instead, the shape of the
overall distribution for older subjects was very similar
to the reactive part of the younger subject distribution.
Indeed, if we consider only responses of young controls
made after 200 ms (the “reactive” distribution), then the
mean reaction time (319 ms, SD 73 ms) was almost
identical to that of the older volunteers (mean 320 ms,
SD 80ms).

Due to the lack of an anticipatory saccade distribu-
tion in older participants, overall they earned less
reward on the task. They made considerably less
reward per trial than the young group, with a mean of
10 p per trial (minimum 4 p, maximum 20 p, SD 4.1).
The correlation between the number of anticipations
and reward was not significant (R2 ¼ 0.19, p > .05),
unlike in younger participants. However, reward corre-
lated inversely with mean latency (R2¼ 0.50, p < .05).

Figure 8. Saccade distributions as a function of amber duration: data and model findings. By maximum likelihood to estimate means and SD for
two recinormal distributions, the data (A and C) are well modeled (B and D). Note how the anticipatory component increases with amber duration.

RAPID DECISION-MAKING UNDER RISK 59



Similarly to the younger group, errors did not correlate
significantly with reward (R2 ¼ 0.002, p > .05).

DISCUSSION

We have developed a simple saccadic task that can
measure decision-making when participants are
required to make rapid choices (stay or go) under
risk. The task generated two groups of responses in
young, healthy volunteers: a reactive distribution and
an anticipatory distribution. The two distributions can
bemodeled by separately parameterized, linear, rise-to-
threshold decision processes. The earlier process is
triggered by the amber light and rises slowly to deci-
sion threshold. In trials with shorter amber durations,
the GO signal triggers the fast-rising reactive process
which reaches threshold before the anticipatory pro-
cess can trigger a saccade. By contrast, trials of longer
amber duration allow the anticipatory process to rise to
threshold and generate a saccade before the green light
onset. There are therefore increasing numbers of antici-
patory responses with increasing amber durations.
Note that neither monetary reward nor auditory feed-
back is necessary to observe the behavior we present
here; we have found that similar results arise if

feedback is given simply as points, using the same
exponentially decaying reward function or with cate-
gorical feedback (rewarded or penalized).

Task performance, measured as reward obtained,
correlated strongly with the percentage of anticipatory,
correct responses (i.e., 0–200 ms after the GO signal).
These are programed before green onset because it
takes ,200 ms to execute a saccade (White et al.,
1962). Thus, participants had to take a decision about
whether to stay and wait, or make a response before the
green light, risking the possibility of a small penalty
against a potentially large reward. Young adults there-
fore made what might be called functionally useful
anticipations. They were willing to take a risk and
make early responses because overall this would opti-
mize overall reward. However, in older subjects, we
found little evidence of anticipatory behavior.

Elderly participants seemed to adopt a more cautious
approach, deciding not to make very many risky deci-
sions, perhaps because they were less motivated by the
potential rewards and/or more sensitive to the penalty of
going too early. Changes in the brain with aging are
known to alter patterns of decision-making (Brown &
Ridderinkhof, 2009), perhaps related to differential sen-
sitivity to rewards versus losses (Samanez-Larkin et al.,
2007). Our paradigm might be sensitive enough to

Figure 9. Traffic light task saccadic distributions in older volunteers. Older controls showed little or no anticipation despite a similar reactive
distribution latency to young controls. The distribution more closely resembles that generated by young controls in the SRT task. Data for young
controls on the traffic lights task is shown here by the dashed line.
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detect such changes, but we need to interpret the results
presented here with caution as our sample was small.
The same applies for the finding that reactive response
latencies in the elderly appeared to be similar to that of
young people. One possible implication of this finding
for psychomotor slowing with age is that the latter might
in fact be due to reduction of premature responding.

The task presented here might also be useful in
studying decision-making in clinical populations, par-
ticularly those who appear to be susceptible to impul-
sive choices. Pathological impulsivity has been
characterized as rapid decision-making under risk
(Moeller et al., 2001). On this paradigm, one might
expect many erroneous, early responses would be char-
acteristic of such behavior. Of course, there are many
existing measures used to index impulsive decision-
making (Aragues et al., 2011; Schonberg et al., 2011),
but few, if any, examine risky choices under tight time
constraints. Paradigms such as the STOP signal task
have been employed to assess how rapidly participants
cancel an ongoing motor plan. But although the STOP
task measures the ability to exert inhibitory control it
does not involve a choice to take a risky decision,
unlike the traffic lights paradigm.

One important aspect of our new paradigm is that
performance can be modeled by an existing framework
that has been used to understand the control of saccadic
eye movements: the linear rise-to-threshold (Carpenter
& Williams, 1995). A similar conceptual framework
has also been used to model performance on the STOP
task, but this time with a race between excitatory activ-
ity triggered by the early GO cue and inhibitory or
braking activity evoked by the later STOP signal.
Such a “two-horse race” also serves as the basis for
our modeling, but with the rise-to-threshold of activity
(or accumulation of evidence) evoked by the amber or
green light both leading to the same result: execution of
a response.

Story and Carpenter (2008) have used dual LATER
units to predict saccadic reaction times in various ocu-
lomotor tasks, but their focus was on modeling expec-
tation from fixation offset and response following
target onset. The traffic lights task puts participants in
a very different context where they have to decide
whether to take a risk to initiate a response in the
absence of a GO signal. Embedded within an existing
behavioral and physiological framework, it has the
potential to be applied in many different circumstances
to assess rapid decision-making under risk in health
and disease.
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