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Cowan and Rouder suggest that a modification to the four-slot model of visual working memory fits
the available data better than our distributed resource model. However, their comparisons of
statistical fit are biased in favor of the slot model. Here, we compare the predictions of the two
models and present further evidence against the division of visual memory into slots.

Along-standing and influential model of
visual working memory proposes a fixed
number of discrete memory slots, each

storing one visual item (1–3). Recently, this
“item-limit” model has been challenged by
studies showing that the resolution with which
items are held in memory depends on the number
of items stored, even when this number is below
the proposed limit (4–7). Rather than being
stored in separate slots, these results suggest that
discrete visual items share a common memory
resource that must be distributed between them
(Fig. 1, left). We have demonstrated (7) that
performance on memory tasks can be captured
by a power law describing how the proportion of
resources allocated to an item determines the
precision with which it is stored. Crucially, we
have shown that this “resource” model also pre-
dicts the apparent discontinuity in change detec-
tion performance that provided the original
incentive for dividing memory into slots.

Several attempts have been made to modify
the item-limit model to see if it too can be made
to account for changes in precision (5, 6, 8). One
proposal by Zhang and Luck (8) allows slots to
“double up” and store the same item, combined
with an averaging process to obtain a single
estimate per item. By taking a quote from our
article out of context, Cowan and Rouder (9)
might be misunderstood to suggest that we over-
looked this hypothesis; in fact, we addressed this
proposal in our supplementary text (7). None-
theless, it is worth examining in more detail.

By allowing multiple slots to combine and
thereby represent items with greater precision,
this “slots + averaging” model behaves like a
quantized version of the resource model, and so
is almost indistinguishable from the resource
model for small numbers of items (Fig. 1, right).
Exceptions occur only when the number of slots
is not divisible by the number of items, in which

case some items must be allocated more slots
than others. No evidence for such unequal alloca-
tion has been reported, and indeed this consider-
ation appears to have been overlooked by both
(8) and (9).

Once the number of items equals the number
of slots, Zhang and Luck’s model makes the
strong prediction that any further increases in set
size cannot affect the precision with which items
are stored, only the probability that an item enters
memory. In comparison, the resource model does
not predict a “hard limit” on the number of items
stored (although neither do we claim that re-
sources will always be distributed equally among
all items: outside of the laboratory, this will rarely
be an optimal strategy).

If we accept Zhang and Luck’s model, their
results indicate that working memory capacity is
limited to about two items (0.38 probability of
storing any individual item in a six-item array)
[figure 2A and supplementary figure 3 in (8)].
This claim is inconsistent with our previous find-
ing that precision continues to decrease with set
size up to at least six items, even when we allow
for the possibility that some items are not stored
[supplementary text and figure S3 in (7)]. Cowan
and Rouder now present a reanalysis of our data,
which they claim shows that the Zhang and Luck
model fits the data slightly better than our re-
source model. However, their formulation of the
slot model [equations 2 and 3 in (9)] has more
free parameters than the resource model [equation
1 in (9)], rendering this comparison invalid (10).
Indeed, their equation 1 provides a more than ade-
quate fit to our full data set, as shown in Fig. 2A.

Nonetheless, Cowan and Rouder are correct
to point out that the two models make the most
divergent predictions when larger changes to
stimuli are used. We have therefore repeated our
experiment with a wider range of stimulus dis-
placements (Fig. 2B). The “slots + averaging”
model predicts that the response function will
asymptote to a nonmaximal value once the num-
ber of slots is exceeded (blue dashed line). How-
ever, we find no evidence of this even for six
items (blue symbols). As discussed previously
[supplementary text in (7)], the true error dis-

tribution for a feature such as color or shape will
be observed only if the tested parameter space
corresponds to the parameter space in which the
feature is stored in the brain. This may explain
why Zhang and Luck (8), testing in an arbitrary
color space, did not observe a Gaussian distri-
bution at extreme values.

Cowan and Rouder also present an analysis
from a previous study (11), in which the authors
attempted to differentiate between item-limit and
resource models without examining precision.
Instead, they constructedmathematical models of
performance in a change-detection task based on
the competing theories and attempted to fit them
to experimental data. The authors again claim
that the item-limit model provides a better fit than
the resource model. In fact, the item-limit model
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Fig. 1. Allocation of visual workingmemory under
the resource model (7) and the slots + averaging
model (8). In the resource model (left), a common
memory resource (yellow) is shared out between
multiple visual items (black symbols). Larger circles
indicate greater resources dedicated to represent-
ing an item inmemory, and so greater precision on
subsequent recall. In the slots + averaging model
(right), memory is divided into discrete slots (here,
four) of equal resolution (yellow circles), and mul-
tiple slots can combine to represent an item with
increased precision. The two models make equiva-
lent predictions for one, two, and four items. For
three items, slots must be allocated unevenly in the
slots + averaging model, so that one item is stored
with greater precision than the others. When the
number of items exceeds the number of slots, the
slots + averaging model predicts that no infor-
mation will be stored about items without a slot.
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fits their experimental data poorly (11), but rather
than accepting this as evidence against the theory,
the authors introduce an additional component:
an attention parameter (a) intended to account for
trials when subjects do not pay attention [see
equations 4 and 5 in (9)]. Their comparison of
statistical fit is clearly biased in favor of this
extended slot model, because no attention com-
ponent is included in their formulation of the
resource model [equations 6 and 7 in (9)].

In conclusion, the item-limit model of visual
memory cannot be brought into agreement with
current results except by introducing new mech-
anisms, such as combining and averaging of

memory slots, for which there is no behavioral
evidence or known neurophysiological basis. In
contrast, a resource model represents a highly
parsimonious account of visual memory, able to
explain both old and new results, and with a
plausible neural basis in population coding (12).
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Fig. 2. (A) Combined performance on location and orientation memory
tasks as reported in (7). On each trial, N items were presented, then
briefly blanked; one item reappeared, changed in either location or
orientation, and subjects had to indicate the direction of change. Gaze
was monitored to ensure that fixation was maintained. Stimulus change is
plotted relative to the standard deviation of the N = 1 response function
[s0 in (9)]. Curves represent the maximum-likelihood fit of the resource

model defined by equation 1 in (9). (B) New data from four subjects on
the location memory task with an extended range of displacements (up to
10° of visual angle, corresponding to >11 s0). The green line indicates
the slope of the mean response function for four items. The blue dashed
line represents the N = 6 response function predicted by an item-limit
model with four slots. Blue solid line and symbols indicate the actual N =
6 response function (error bars, T1 SE).
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