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Working memory (WM) is a core cognitive process
fundamental to human behavior, yet the mechanisms
underlying it remain highly controversial. Here we provide
a new framework for understanding retrieval of
information from WM, conceptualizing it as a decision
based on the quality of internal evidence. Recent findings
have demonstrated that precision of WM decreases with
memory load. If WM retrieval uses a decision process that
depends on memory quality, systematic changes in
response time distribution should occur as a function of
WM precision. We asked participants to view sample
arrays and, after a delay, report the direction of change in
location or orientation of a probe. As WM precision
deteriorated with increasing memory load, retrieval time
increased systematically. Crucially, the shape of reaction
time distributions was consistent with a linear
accumulator decision process. Varying either task
relevance of items or maintenance duration influenced
memory precision, with corresponding shifts in retrieval
time. These results provide strong support for a decision-
making account of WM retrieval based on noisy storage of
items. Furthermore, they show that encoding,
maintenance, and retrieval in WM need not be
considered as separate processes, but may instead be
conceptually unified as operations on the same noise-
limited, neural representation.

Introduction

Working memory (WM) is a fundamental cognitive
process that underpins many everyday behaviors. In
the visual domain, WM selectively preserves salient
information over time (Baddeley, 2003; Sperling, 1960)
and across eye movements (Henderson, 2008; Irwin,
1991), to guide efficient exploration of the environment
(Soto, Humphreys, & Rotshtein, 2007). However,
despite the fact that we understand many aspects of
visual WM, there is no consensus on underlying
mechanisms (see for example Bays & Husain, 2008;
Rouder et al., 2008; Zhang & Luck, 2008). In recent
years, most studies designed to examine WM mecha-
nism have focused on the pattern of errors made by
participants, and these have proven to be crucial to
current debates (Bays & Husain, 2008; Emrich &
Ferber, 2012; Rouder et al., 2008; van den Berg, Shin,
Chou, George, & Ma, 2012; Wilken & Ma, 2004;
Zhang & Luck, 2008). By contrast, there has been far
less emphasis on response times (RTs). Although these
were of fundamental interest in the past (Sternberg,
1966), mental chronometry approaches to WM have
fallen out of favor, perhaps because influential pro-
posals based on RTs, such as Sternberg’s serial
scanning model, were found to be inadequate (for a
review see Greene, 1992).
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It is nevertheless clear that response times can
provide highly informative, mechanistic perspectives
on cognitive processes (Jensen, 2006; Luce, 1986;
Posner, 1978). In the field of perceptual judgment, for
example, critical insights have come from studying
choices and their timing, treating both as the product
of neural decision mechanisms (Palmer, Huk, &
Shadlen, 2005). A single general decision format
capable of explaining data from behavior as well as
neurophysiology has emerged (Bogacz, Brown,
Moehlis, Holmes, & Cohen, 2006; Gold & Shadlen,
2007; Smith & Ratcliff, 2004): a scalar decision
variable accrues evidence in support of potential
choices over time, and the first to reach a threshold or
‘‘bound’’ is chosen (Carpenter & Williams, 1995;
Laming, 1968; Ratcliff, 1978; Usher & McClelland,
2001). Resulting decision models have proven pow-
erful: They can explain response times for judgments
about sensory features such as brightness and motion
(Ratcliff, 2002; Roitman & Shadlen, 2002); they
capture details of the neural activity in various brain
regions underlying such decisions (Hanes & Schall,
1996; Shadlen & Newsome, 2001); and they can
adjudicate between different hypotheses about exper-
imental influences on behavior (de Gardelle &
Summerfield, 2011; Hanks, Ditterich, & Shadlen,
2006; Yang & Shadlen, 2007). As well as simple
sensory judgments, similar decision processes are
thought to govern responses in value-based decisions
(Hare, Schultz, Camerer, O’Doherty, & Rangel,
2011).

These findings suggest that general principles might
apply across different types of cognitive process. Here
we ask whether retrieval of information from visual
WM can also usefully be conceptualized as a decision
that leads to a choice—one that operates on internal
evidence, analogous to when choices are based on
external sensory evidence. To address this question we
measure how RT distributions are influenced by the
quality of memory. Our approach is inspired by
research that has led to the proposal that there is a
very limited WM resource available to hold items over
short durations (Bays & Husain, 2008; Palmer, 1990;
Salmela, Lähde, & Saarinen, 2012; Wilken & Ma,
2004). Experimental findings suggest that variability
of WM representations around the true value
increases with memory load, so precision of recall for
object attributes falls with increasing number of items.
Such a limited resource account of WM representa-
tions is based on the principle that memory represen-
tations are noisy, and get noisier with increasing
memory load (Bays & Husain, 2008; Palmer, 1990;
Salmela et al., 2012; Wilken & Ma, 2004). If retrieval
from WM uses a decision process that depends upon
the quality of evidence, we would expect to see
systematic changes in RT distribution as a function of

quality of memory, as indexed by the variability or
precision of report. Moreover, if such effects apply
across a range of WM paradigms, this would suggest a
fundamental principle that can provide crucial in-
sights into the mechanisms underlying WM.

The decision model we use to interpret our data is
Linear Approach to Threshold with Ergodic Rate
(LATER) (Carpenter & Williams, 1995; Reddi, Asrr-
ess, & Carpenter, 2003). In most respects LATER
resembles the standard accumulator-type decision
model, but it has the unique feature that the rate of
accumulation is fixed within trials (varying only
stochastically from trial to trial), making it the simplest
‘‘rise to threshold’’ variant (Figure 1A and B). It can
adequately explain performance in brightness and
motion judgments, as well as several other two-choice
variants, using comparatively few parameters (Ander-
son & Carpenter, 2010; Carpenter, Reddi, & Anderson,
2009; Emeric et al., 2007; Halliday & Carpenter, 2010;
Noorani, Gao, Pearson, & Carpenter, 2011; Sinha,
Brown, & Carpenter, 2006; Story & Carpenter, 2008).
Moreover, it accommodates decisions between more
than two alternatives, a problem with which many
other models are still grappling (Churchland, Kiani, &
Shadlen, 2008; Krajbich & Rangel, 2011).

According to LATER, response time can only be
influenced by a change in the quality of evidence,
reflected either in the rate of rise of evidence or signal
(l) or the position of the decision threshold relative to
priors (ST -S0, signal threshold and initial signal level,
respectively). Importantly, these different mechanisms
can be distinguished by their effects on RT. Thus a
change in only l translates and stretches the distribu-
tion to longer RT (Reddi et al., 2003) (Figure 1C),
resulting in a pure horizontal shift on reciprobit axes
(Figure 1D). Changes in the other parameters (Figure
1E), by contrast, alter the slope in reciprobit plots
(Figure 1F). Existing decision studies have found that
the coherence of sensory evidence primarily affects the
rate of rise or mean drift rate in decision models
(Ratcliff, 1978; Reddi et al., 2003) and in neuronal
spike rates (Roitman & Shadlen, 2002; Shadlen &
Newsome, 2001).

If memory guides choice by way of a decision
mechanism acting on internal rather than sensory
evidence, we would make several key predictions about
memory retrieval.

Prediction 1: Response time to retrieve an item
should increase with memory load

Having a coarser memory of an item should provide
sparser evidence to the decision process, and thereby
slow responses. One way to lower precision of memory
is simply by increasing the number of items to be
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Figure 1. The LATER model in working memory. (A) A decision variable or signal, representing commitment to a particular response, is

set off by a stimulus (in this case the memory probe, a response prompt), rises linearly from an initial level (S0) at a rate picked from a

normal distribution with mean l and SD r, and initiates a response upon reaching threshold (ST). The resulting RT distribution is

skewed. (B) This is reflected in an asymmetric cumulative density function. However, when plotted on a reciprocal time x axis and

probit y axis (a reciprobit plot) it is linear, allowing parameters such as l and r to be estimated easily. Increasing memory load reduces

the memory resource available per item (Bays & Husain, 2008; Wilken & Ma, 2004). This could influence the LATER mechanism in two

ways: reducing mean rate of rise l (C), which would be evident in self-parallel shifts of the reciprobit RT distribution (D), or raising

decision threshold (E), causing reciprobit swivel (F).
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remembered (Bays & Husain, 2008; Palmer, 1990;
Salmela et al., 2012; Wilken & Ma, 2004), so increasing
memory load should lead to systematic increases in RT.

Prediction 2: Rate of rise of evidence
accumulation (l) for the decision process
should vary linearly with memory precision

Importantly, the decision model parameter l can be
estimated directly from individual subjects’ RT distri-
butions, while memory precision can be estimated from
performance variability, allowing us to ask whether
precision is the currency drawn upon by the decision
process.

Prediction 3: Alternative manipulations of
memory precision should also have predictable
consequences for RT

Tasks in which memory load is fixed but memory
precision is manipulated by other means should
nonetheless produce corresponding, predictable
changes in RT. For example, if memory resources are
prioritized to an item by cueing or are degraded by an
extended maintenance delay period, responses should
be respectively speeded and slowed in a pattern
predicted by the model.

Methods

Experiments 1 and 2: Procedure

A total of 33 participants (14 female, aged 18–37)
with normal or corrected-to-normal visual acuity were
tested after giving informed consent. The experiments
conformed to the Declaration of Helsinki and were
approved by University College London’s NHS Re-
search Ethics Committee. To guarantee naı̈veté as to
the aims of the experiment, no experimenters from the
research team acted as subjects, and the aims of the
experiment were only revealed to the subjects once they
had finished.

Participants were seated 70 cm from a 21 in. CRT
monitor with a refresh rate of 140 Hz. A depiction of a
typical trial and details of events and timings are given
in Figure 2A and 2B (the stimuli used and design of the
tasks are similar to those reported in Bays & Husain,
2008). Experiment 1 was designed in Cþþ and run
under Windows XP. Experiment 2 was designed and
run in Matlab 7.10 using the Psychophysics Toolbox
(Version 3) extensions (Brainard, 1997).

In Experiment 1, while subjects fixated a cross to one
side of the screen, an array of one, two, four, or six items
was presented for 1000 ms to the other side, centered 108
from fixation. The stimuli differed for the two tasks: for
the location task they consisted of colored squares (0.88
· 0.88); for the orientation task, randomly oriented

Figure 2. Measuring precision of location and orientation memory. (A) Stimuli and sequence of events on a location-judgment trial.

The array featured one, two, four, or six items; here an array size (N) of two items is shown. After the sample display is blanked,

subjects’ memory for location of a randomly chosen item is tested by redisplaying the item displaced horizontally through distance D
(0.58, 28, or 58). The subject presses a button to report the direction of displacement. (B) An orientation judgment trial (this time with

a set size of four items). A randomly chosen item is redisplayed, rotated through an angle D (58, 208, or 458). Red circles indicate gaze

position. (C) For each memory load, performance (proportion of responses judging the displacement or rotation as away from

fixation) is plotted as a function of the actual displacement or rotation magnitude D. Memory precision is measured as the reciprocal

of the SD of the fitted cumulative Gaussian.
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colored arrows (radius 1.258). For the orientation task
Bays and Husain (2008) used a parameter space
comprising the full 3608 of possible arrow orientations,
whereas we constrained our stimuli to a 1808 range (the
upper half of the circle). The rationale for this change
was to avoid the possibility of ambiguity in responses to
large amplitude rotations, which could in theory be
judged either clockwise or anticlockwise in a 3608 space.
In both tasks all items were located in random positions
within the boundaries of an invisible square (98 · 98), at
least 38 apart. Highly distinguishable colors (red, green,
blue, yellow, cyan, white) were randomly selected for the
items, without repetition. After a 500 ms blank delay
period, a single item from the sample display—the
probe—was redrawn slightly displaced (location task)
from its original position, or slightly rotated (orientation
task). Three levels of difficulty (D) were used: for the
location task, 0.58, 28, or 58 of leftwards or rightwards
displacement and for the orientation task, 58, 208, or 458
of clockwise or counterclockwise rotation. Subjects were
instructed to report the direction of the change as
quickly and accurately as possible by pressing the left or
right arrow key on a number pad. Response time was
recorded from the presentation of the probe.

Eye position was monitored online at 1000 Hz using
a frame-mounted infrared eye tracker (Eyelink 1000,

SR Research), and trials were repeated if eye position
deviated more than 28 from the fixation cross. The
position of the fixation cross alternated between the left
and right side of the screen trial by trial. Thirty-one
participants took part in Experiment 1, each perform-
ing either the location or orientation task (except for six
subjects who did both tasks, counterbalanced for the
order in which they were done), resulting in 19 datasets
for the location and 18 for the orientation task.
Participants undertook four blocks of 48 trials in total,
save for four of the location task subjects, who
completed a longer version (32 blocks or 1,536 trials
each, with breaks) to provide larger datasets, so that
response accuracy (psychophysical performance) and
response times could be compared on a within-subject
basis. One of these four participants was subsequently
excluded from the analysis (see below).

The two participants taking part in Experiment 2 had
not been involved in Experiment 1 and were again naı̈ve
to its aims. The design of Experiment 2 was similar to
that of the orientation task in Experiment 1, except that
the stimulus always consisted of two items, the
magnitude of the rotation of the target itemwas always D
¼ 208, and the stimulus array was preceded by a square
cue (0.88 · 0.88) shown at fixation. The square was
shown for 1 s, followed by a gap of 500 ms and then the
fixation cross, after which trials proceeded as for
Experiment 1. Trials were split into three different types:
In 50% of trials the square was filled with the color of the
target item in that trial (VALID trials), in 25% it was
filled with the color of the other item in the stimulus
array (INVALID trials), and in the remaining 25% of
trials the square was an empty black frame (NEUTRAL
trials). Both participants completed 19 blocks of 32 trials.

Experiments 1 and 2: Analysis

Individual subjects’ response times were analyzed
separately for each condition, meaning each combina-
tion of array size N and displacement or rotation
magnitude D. Trials with the same displacement D
towards and away from fixation did not differ in RT
and were collapsed together. The data for one location
task subject were excluded from the analysis due to
anomalously low accuracy, leaving 18 datasets for this
task. Because of considerable intersubject variability in
response time, for the group results (Figure 3, top)
response time and its associated error bars represents
the mean 6 SEM of the 18 individual subjects’ scaled
median response times (s), calculated as

ssubj;cond ¼ medianðRTsubj;condÞ �medianðRTsubjÞ
þmedianðRTgroupÞ: ð1Þ

They thus represent the residual intrasubject SEM as
calculated according to Cousineau (2005). However,

Figure 3. Set size and memory discrimination difficulty affect

response time for both location and orientation tasks. Top:

group average of median correct RT for 18 subjects as a

function of set size N and displacement/rotation size D; error
bars represent SEM calculated after excluding variability

associated with between-subject differences (Cousineau, 2005).

Bottom: group memory precision (1/error function SD, see

Figure 2) for 18 subjects as a function of set size N.
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for the purposes of statistical comparison raw response
times were entered in a four-by-three way repeated-
measures analysis of variance (ANOVA) on number of
array items (one, two, four, six) and displacement (0.58,
28, 58 for the location task or 58, 208, 458 for the
orientation task). Memory precision (Figure 3, bottom)
was calculated from the group’s psychophysical per-
formance function at each array size N. A cumulative
Gaussian regression model was fit to the relationship
between response probability and stimulus displace-
ment D for each array size, as reported previously in
Bays and Husain (2008). Similar output measures were
recorded: The standard deviation r of the best-fitting
Gaussian provided an estimate of response variability,
and 1/r a measure of memory precision.

For the four participants who provided larger
datasets, psychophysical performance (measured as
described above) and response times were analyzed
individually. Results for one of these subjects could not
be used (see above) because she had anomalously low

accuracy and highly aberrant RT distributions that
were not amenable to the following conventional
analysis. To test whether distributions of reciprocal
response time were normally distributed (and that we
were justified modelling them in LATER terms) we
created reciprobit plots (see Figure 1) of correct RT for
each subject and condition: 1/RT was plotted cumula-
tively on a probit y axis (a skewed cumulative
probability axis upon which Gaussian distributions are
linear), a transform that yields straight lines with
median l and slope 1/r, direct estimates of the
corresponding LATER model parameters. We used the
Kolmogorov-Smirnov one-sample test to test for
deviation from the normal distribution. In conditions
in which large numbers of error responses are
produced, reciprobit distributions are known to deviate
from linear in the (long RT) tail, making them
unsuitable for normality testing (Noorani et al., 2011).
We therefore censored (only from this normality

Figure 4. Influence of set size and probe displacement on reciprocal RT and the LATER model parameter l. (A, top) Example RT

distributions from two subjects for different set size conditions (all for D¼ 58) on reciprobit axes, in which reciprocal RT is plotted

cumulatively on a probit ordinate. X axis labels show 1/RT (response rate) values and corresponding RTs. (A, bottom) Example RT

distributions from two subjects for different displacements (all for N¼ 1), reciprobit axes. Note that data points in green are identical

because they represent the same condition. (B) Values for the decision model parameter l (measured from the RT distributions in A)

for three subjects as a function of array size. Individual subjects’ values were scaled relative to the group mean, as described in

Cousineau (2005). (C) The same values for l as a function of subjects’ memory precision (1/error function SD, see Figure 2).
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analysis) conditions in which more than 10% of errors
were made.

In order to determine which of the two alternative
models in Figure 1C and E better captured the effect of
N and D on RT, using a likelihood ratio test in bespoke
software (SPIC, Carpenter, 1994) we tested two
possible distribution transformations (Figure 1D and
F): self-parallel shift of the recinormal distribution
along the rate axis, and rotation (swivel) around a
common intercept on the infinite time axis. We carried
out seven such comparisons for each of the three
subjects, one for each value of N to test the effect of
only changing D (four), as well as one for each D to test
the effect of only changing N (three). Out of the 21
comparisons carried out, 12 were significantly in favor
of distribution shift, and only one (for D¼ 0.5 for one
subject i.e., for conditions in which numerous errors
distort the distributions) was in favor of swivel. Log
likelihood ratios (LLRs) from individual comparisons
were summed across subjects and conditions to
determine which hypothesis (shift or swivel) offered a
superior fit overall. We carried out a single likelihood
ratio test for each subject in Experiment 2, testing for
shift or swivel of the 1/RT distributions shown in
Figure 5, and again summed the LLRs.

Experiment 3: Procedure

Ten neurologically normal subjects (five female, aged
18–29), with normal or corrected-to-normal visual
acuity, took part in Experiment 3. The experiment was
designed in Cþþ and run under Windows XP. Stimuli
were presented using the same experimental setup as
described above. Each memory array consisted of one

or six oriented bars presented on a gray background in
an imaginary circle (radius 4.48) around fixation. In the
six-item case, all bars were equally spaced and bars
differed by at least 108 in orientation, which was
otherwise random. The colors of the bars in each trial
were randomly selected out of eight highly discrimina-
ble colors.

Each trial began with the presentation of a central
white fixation cross (0.88 diameter) for 500 ms, followed
by a test array of oriented bars shown for 500 ms. A
memory probe, consisting of a centrally positioned bar
of one of the colors in the memory array, and having
random orientation, was then presented at 0.1, 1, 2, or
3 s after disappearance of the array. Using a response
dial (PowerMate USB Multimedia controller, Griffin
Technology, Nashville, TN) subjects rotated the
randomly oriented probe bar to match the remembered
orientation of the target item (the bar of the same color
in the test array). Each of the participants performed
between 10 and 15 sessions of 40 trials, 20 trials for
each of the array sizes, five of which used each delay
duration.

Experiment 3: Analysis

In each trial raw error was recorded as the angular
deviation between the orientation reported by the
subject and the orientation of the target item.
Distributions of error were fitted using a mixture model
incorporating responses of three distinct types: those
directed at the target, those directed at a different (non)
target and responses distributed randomly. A detailed
description of the model is depicted in previous
manuscripts (e.g., Bays, Catalao, & Husain, 2009).

Figure 5. Influence of working memory allocation on response time. RT distributions for two subjects in different cueing conditions,

on reciprobit axes (reciprocal RT is plotted cumulatively on a probit ordinate). One of the two items was endogenously precued by

color, either the item subsequently probed (valid cue) or the other, nontarget item (invalid cue); in 25% of trials the cue was neutral.

X axis labels show 1/RT (response rate) values and corresponding RTs.
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Maximum likelihood estimates (Myung, 2003) of the
model parameters were obtained separately for each
subject and condition using an expectation maximiza-
tion algorithm (MATLAB code available at: http://
bayslab.com/code/JV10/). This process yields the stan-
dard deviation of error for responses directed at the
target, taken here as the reciprocal of memory
precision, as well as the proportion of nontarget and
random responses. Response time was recorded as the
time elapsed between appearance of the probe bar and
the subject pressing the dial to register the response.
Both sets of raw data were entered in a two-by-four
way repeated-measures ANOVA on array size (one or
six) and delay (0.1, 1, 2, or 3 s). However, for the
purposes of Figure 6, RTs were corrected for inter-
subject variability, as for Experiment 1 above (Cous-
ineau, 2005).

Results

We tested the effect of memory load on retrieval time
using a change discrimination task in which subjects
viewed sets of colored blocks or oriented lines on a
screen, and reported the direction of change in position
or orientation of one of the items when it reappeared
after a delay (Figure 2). The number of items to be
remembered (N), and judgment difficulty (magnitude of
change to target stimulus after the delay, D), were
manipulated across trials in a full factorial design.
Letters or digits have been used in most previous

studies of memory retrieval dynamics, forcing re-
searchers to use recognition tasks in which subjects
indicate whether or not a new visual stimulus differs
from a reference set (Hockley, 1984; Ratcliff, 1978;
Sternberg, 1966, 1969). Such recognition tasks are
inherently asymmetric, introducing a choice bias. We
used the location and orientation of simple geometric
shapes in this study because these features are
symmetric and continuous (they may be varied para-
metrically) and their representation in memory is well-
characterized (Bays et al., 2009; Bays & Husain, 2008).

Prediction 1: Retrieval time should increase
with memory load

A coarser memory representation of an item should
provide sparser evidence to the decision process,
demanding longer evidence accumulation and thereby
slowing responses. One of the ways in which precision
of memory recall can be varied is by increasing memory
load (Bays & Husain, 2008; Palmer, 1990; Salmela et
al., 2012; Wilken & Ma, 2004). Figure 3 (top) shows
how response times for judgments of both location and
orientation were influenced by number of items (N) to
be remembered as well as difficulty of discrimination
(D, size of the displacement). Consistent with Predic-
tion 1, there was a powerful effect of memory load. As
subjects remembered more items, they took signifi-
cantly longer to discriminate the change in one of them,
for all values of D, main effect of N, location task: F(3,

Figure 6. Influence of delay period on memory precision and response time. (A) Group mean (6 SEM) of the standard deviation

(precision�1) for subjects’ matching responses in a task testing free report from memory of stimulus orientation, as a function of the

number of items presented and the delay before the cue to respond. (B) Group median response time for the same conditions,

reflecting the combined duration of memory recall and rotation of the dial to the remembered orientation (6 within-subject SEM,

calculated after excluding variability associated with between-subject differences, as described in Cousineau, 2005).
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51)¼ 34.3, p , 0.001; orientation task: F(3,51)¼ 45.2, p
, 0.001. Response times were also significantly longer
the smaller the displacement to be discriminated from
memory, location task: F(2, 34) ¼ 10.3, p , 0.001;
orientation task: F(2, 34)¼ 19.1, p , 0.001. Figure 3
(bottom), which reports response accuracy for the
group, replicates the finding that memory precision
declines initially rapidly and then more slowly with
increasing set size (Bays & Husain, 2008).

Prediction 2: Rate of rise of evidence in the
decision process should vary linearly with
memory precision

In principle, numerous models for the way response
time depends on evidence in memory could potentially
account for the observed median response times, but
details of the shape or fine structure of RT distributions
can distinguish between models (Noorani & Carpenter,
2011). Idiosyncrasies in individuals’ response times
result in this information being lost when results are
combined across subjects, so to investigate Prediction 2
more thoroughly we recorded and analyzed separately
larger datasets from three subjects on the location task
(totaling some 4,680 trials).

The LATER model (Figure 1) predicts that not
response time but its reciprocal, analogous to response
rate in Hertz, will be distributed normally. Figure 4A
shows example response time distributions for two
subjects, for the effect of N with D held constant
(Figure 4A, top) and vice versa (Figure 4A, bottom). In
each condition the reciprocal of response time is plotted
cumulatively on a probit scale (a reciprocal-probit, or
reciprobit, plot), upon which a Gaussian distribution
follows a straight line. For the conditions in which
fewer than 10% errors were produced (for an explana-
tion of why this is necessary, see Methods), the
distributions of 1/RT for none of the three subjects
deviated from normality (Kolmogorov-Smirnov one-
sample test, p . 0.05). Satisfying this core requirement
of LATER strengthens the argument that memory
retrieval is a process that evolves over time with a rate
distributed across trials in a Gaussian fashion.

The reciprobit plots in Figure 4A reveal further that
distributions of 1/RT for conditions differing only in
the value of N or of D are shifted in a self-parallel
manner along the rate axis, as in Figure 1D, rather than
exhibiting the change in slope shown in Figure 1F, as
confirmed by comparing the two alternatives using
likelihood methods (log likelihood ratio [LLR]¼ 122.1,
equivalent to p , 0.0001; for details see Methods). In
LATER model terms, this means that only the mean
rate of evidence accrual (l)—and not its variance (r2),
start point (S0), or threshold (ST)—changes between
conditions. But does l vary in proportion to the

evidence from which it is derived (memory precision),
as we would predict?

For each subject and condition we estimated the
LATER parameter l, keeping all other parameters
fixed across conditions (see Methods). l varies as a
nonlinear function of array size (Figure 4B), a
relationship predicted by the nonlinear trend in RT
observed in the population curves (Figure 3). The
individual subjects’ memory precision values were
estimated from their performance functions at each set
size (according to procedures reported previously in
Bays and Husain [2008], see Methods). Figure 4C
shows that l varies linearly with memory precision.
Considering each of the three displacement values
separately, l was strongly correlated with memory
precision (R2

10 . 0.975, p , 0.02). This key finding
supports the theory that, when memory is used to guide
behavior, the degree of noise in the representation of a
stored visual feature determines the quality of evidence
supplied to the decision mechanism.

Prediction 3: Manipulations of memory
precision should have predictable consequences
for RT

A decision-making account of retrieval from mem-
ory predicts analogous effects on RT when set size and
stimuli are held constant, but other interventions
known to influence memory precision—such as item
cueing or maintenance delays—are used to manipulate
memory representations (e.g., Bays & Husain, 2008).
According to the decision model, the effects these
manipulations have on memory precision should be
accompanied by corresponding changes in the param-
eter l, yielding parallel reciprobit distributions.

We tested this prediction in two new subjects
performing a version of the orientation task in which
only arrays of two randomly oriented bars were used.
One of the oriented bars was cued by a square of its
color appearing at fixation before the trial began, and
either the cued bar or the other bar was subsequently
tested (VALID and INVALID trials, respectively). In
NEUTRAL trials an uninformative cue appeared.

Figure 5 shows that, relative to NEUTRAL trials,
on trials with cueing the cued item experienced an RT
advantage (VALID trials), and there was a response
time cost for the other item (INVALID trials). We
compared the individual subjects’ latency distributions
in pairs, VALID versus NEUTRAL and NEUTRAL
versus INVALID. None of the three distributions of 1/
RT for either of the subjects deviated from normality
(Kolmogorov-Smirnov one-sample test, p . 0.05).
Mean reciprocal RT differed significantly for both
comparisons for both subjects (t . 2.9, p , 0.005, using
an unpaired t test because the number of trials differed
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between conditions). All reciprocal latency distributions
differed significantly from one another (Kolmogorov-
Smirnov two-sample test, p , 0.001). This difference
represented a parallel shift with l increased for the cued
item and reduced for the uncued one (summed LLR¼
5.259, equivalent to p ¼ 0.015). These effects are
consistent with Prediction 3: since cueing increases
memory precision for one item at the expense of others,
we could expect the decision mechanism to accrue
evidence faster (higher l) than in the neutral condition
for the cued item and slower for the item not cued,
altering RT systematically across the conditions as
found.

To demonstrate how widely applicable the decision
model explanation is, we next manipulated the quality
of the information in memory in a different way, by
adjusting the length of the delay period before the
probe appeared. Furthermore, to test whether our
decision-making approach applies beyond two-alter-
native forced-choice situations, we used a task in which
subjects reported remembered visual orientations freely
by rotating a dial. This analog report method has seen
recent success in explaining the errors people make in
remembering locations and orientations (Bays et al.,
2009; Bays, Wu, & Husain, 2011; Gorgoraptis,
Catalao, Bays, & Husain, 2011; Pertzov, Bays, Joseph,
& Husain, 2013; Wilken & Ma, 2004; Zhang & Luck,
2008), but has yet to be used in studies of the timing of
memory retrieval.

Our 10 subjects were shown either one or six colored
bars and were asked to remember their orientation.
After a delay of 100 ms, 1, 2, or 3 s, the colored probe
bar appeared and subjects responded by rotating the
probe—using the dial—to the orientation in which they
remembered the target item. This free report procedure
yields a distribution of errors across trials, for which
the standard deviation of the distribution of response
errors serves as an inverse measure of memory
precision (a parameter estimated instead for the fitted
psychophysical error functions used in the experiments
above). Though inevitably incorporating delays due to
rotating the dial, the time at which the dial was pressed
to register the matched orientation was taken as
response time, permitting a comparison to be made
between an analog scale of memory error and
corresponding RT.

As shown in Figure 6, at the shortest delay, memory
was more accurate for the one-item than the six-item
condition, and the effect was exaggerated by the length
of the delay. There were significant main effects of load,
F(1, 9)¼ 27.8, p¼ 0.001, and of delay, F(3, 27)¼ 9.4, p
, 0.001. However, although the length of the delay
only mildly influenced memory error when one feature
was stored, there was a profound degradation of
memory with six items, leading to a significant
interaction between load and delay, F(3, 27)¼ 5.5, p¼

0.004. This loss of precision of recall over time with
increasing number of items may be related to increased
competition from multiple items residing simulta-
neously in memory (Pertzov et al., 2013). A similar
pattern was also observed for RT, crucially with a
significant interaction between load and delay, F(3, 27)
¼ 3.12, p ¼ 0.039. The effects were smaller than those
for error, but RTs display high variability, and subjects
were given specific instructions to respond accurately
rather than being told to make speeded responses.
Under these circumstances, the resemblance in the
pattern of results suggests a close association between
memory quality and the decision process accessing it.

Discussion

The evidence presented here is consistent with the
view that judgments based on features stored in visual
WM are the result of a decision process that evaluates
the noisy evidence in memory before reaching a
threshold and initiating a response. Response time was
strongly influenced by memory quality: It increased as
more items had to be stored (Figure 3), reduced when
responding to an item with greater task relevance
(Figure 5), and mirrored the degradations in memory
accuracy that occur over maintenance delays (Figure
6). A simple decision mechanism (LATER) can explain
these global patterns and the specific shape of RT
distributions for individual subjects (Figure 4). In this
model, commitment to a memory-based choice accu-
mulates towards a response threshold at a rate
proportional to the precision with which remembered
items are stored (Figure 1).

This mechanism has broad appeal because it can
explain behavior under several different conditions:
with different stimulus features (location and orienta-
tion), cued and uncued items, and even different
response types (forced choice by button press or free
match to sample by rotation of a dial) and response
priorities (speed or accuracy). The three experiments
indicate that, rather than impinging separately on the
choice process, all these factors influence the precision
of feature representations in memory, the currency
drawn upon as evidence by the decision process to
evaluate potential responses.

This conceptual framework is based on the as-
sumption that information remembered about a visual
feature takes time to be expressed in a response
specifically because an assessment of noisy evidence in
WM evolves over time. The more noise is present, the
slower the decision evolves and the longer the response
time. Such a proposal challenges classical views that the
delay in retrieval is due to the difficulty of accessing
information from storage. Much previous work on
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retrieval has focused on letter or digit recognition and
construed the process as a search for items in memory
(Sternberg, 1966), a view that still prevails (see for
example Astle, Summerfield, Griffin, & Nobre, 2012).
Sternberg’s serial exhaustive scanning model, which
predicts a linear increase in RT with set size because
each discrete item takes a fixed time to retrieve, was
hugely influential but failed to accommodate inconsis-
tencies such as probability (Theios & Walter, 1974),
repetition (Baddeley & Ecob, 1973), and serial position
(Corballis, 1967) effects (as reviewed in Greene, 1992).

The findings here also show that RT does not
increase linearly but instead bears a decelerating
relation to the number of remembered items. However,
crucially, our analysis reveals that this is because the
decision process rate of rise l depends linearly on
memory precision rather than memory load (Figure 4),
the former varying in an inverse power manner with set
size (Figure 3). Recent research in WM has provided
evidence, based on analysis of the pattern of errors,
that the representation for short-term storage is a
highly limited resource (Bays & Husain, 2008; Elmore
et al., 2011; Wilken & Ma, 2004) that can nevertheless
be flexibly deployed (Bays et al., 2009; Gorgoraptis et
al., 2011; Pertzov et al., 2013; Zokaei, Gorgoraptis,
Bahrami, Bays, & Husain, 2011). With increasing
memory load, the representation of each item becomes
more variable around its true value (Bays & Husain,
2008; Palmer, 1990; Salmela et al., 2012; Wilken & Ma,
2004), providing noisier evidence for a decision process
to operate upon. Our findings here, based on RT
distributions across several different WM paradigms,
demonstrate that there is a clear relationship between
the precision of memory report and time taken to reach
a decision. It is perhaps worth noting that we have not
investigated all potential influences on precision and
response time. Previous studies, such as Bays et al.
(2009), have shown for example that misreporting
nontarget features can influence the measured value of
precision, an effect that has also been shown for
irrelevant features (Huang, Kahana, & Sekuler, 2009).
These are additional influences that would profitably be
investigated in future studies.

What specifically governs the decision process? The
different slopes in Figure 4C show clearly that l is not a
function of memory precision P alone, but is also
modulated by the stimulus displacement D. In this sense
l represents a kind of signal to noise ratio, reminiscent
of signal detection theory accounts of visual WM
(Wilken & Ma, 2004): probe displacement D, the signal,
is in effect scaled relative to memory noise (though note
that, as in most previous studies, the signal detection
theory account of visual WM did not refer to RTs).
Furthermore, the parallel relationship between 1/RT
distributions in Figure 4A confirms that this ratio only
affects l. The position of the decision priors and

threshold and the trial-to-trial variance in rate of rise r
(see Figure 1) remain unchanged.

Of the many models of WM retrieval developed since
Sternberg, perhaps the most successful has been the
Drift Diffusion Model (Ratcliff, 1978). It also views
retrieval as a decision, and its rate-of-accumulation
variable Drift reflects the relatedness between remem-
bered items and the probe. But Drift, along with
numerous other variables, is simply fit from RT data
independently for each condition; no attempt is made
to account for trends in their values using other known
properties of memory (Donkin & Nosofsky, 2012b). In
response, recent studies have attempted to model in
great detail the influence on RT distributions of factors
such as forgetting (Donkin & Nosofsky, 2012a) and the
combined effect of array size and serial position
(Donkin & Nosofsky, 2012b). But they have still
needed to draw on assumptions about how memory
and decision interact, such as that drift varies linearly
with array size. A related problem affects a model that
is used to describe memory resources in terms of
quantized slots (Cowan, 2005; Luck & Vogel, 1997;
Vogel, Woodman, & Luck, 2001; Zhang & Luck, 2008).
In this model, as memory load increases so that more
items have to be stored, separate compartments in
memory are filled one by one. But the capacity of each
slot—its resolution—does not change. None of these
models specifies how a memory representation dictates
what value is accrued by a decision mechanism. By
using stimuli in our study whose discriminability from
one another (in position or orientation) could be
varied, we were able to estimate memory precision and
relate measured decision parameters to it.

Our approach here has been to consider whether the
resource framework provided by studies of error
patterns in WM (Bays & Husain, 2008; Palmer, 1990;
Salmela et al., 2012; Wilken & Ma, 2004) might make
predictions for response time in the context of a
decision-making interpretation. Expert consensus on a
range of problems in neuroscience has begun to
converge on a view of behavior in which decision
variables accrue evidence in support of potential
choices over time, with the first to reach a threshold
chosen as the response (Carpenter & Williams, 1995;
Gold & Shadlen, 2007; Laming, 1968; Ratcliff, 1978;
Usher & McClelland, 2001). The findings presented
here show that such an approach might also have
important implications for WM.

Furthermore, a natural conclusion to be drawn from
the argument developed here is that encoding, mainte-
nance, and retrieval need not be functionally separate
cognitive processes, but operations on the same noise-
limited neural resource (Bays et al., 2009; Bays &
Husain, 2008; Palmer, 1990; Wilken & Ma, 2004). This
view has gained ground through studies showing the
contents of working memory to be intrinsically bound
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up with sensory mechanisms. Neurons in visual area
MT, as well as encoding visible motion stimuli, are
known to exhibit activity during the delay after the
stimulus that is related to remembered motion (Bisley,
Zaksas, Droll, & Pasternak, 2004), and fMRI decoding
has identified orientation information retained in WM
across V1-4 (Harrison & Tong, 2009). Independent
behavioral confirmation has come from work showing
that the contents of WM can bias the subjective
experience of orientation and ambiguous motion
stimuli (Scocchia, Cicchini, & Triesch, 2013; Scocchia,
Valsecchi, Gegenfurtner, & Triesch, 2013). Further
studies that have looked specifically at encoding (Bays,
Gorgoraptis, Wee, Marshall, & Husain, 2011) and
maintenance durations (Pertzov et al., 2013; Phillips,
1974) also point to these being operations on the same
noise-limited resource, providing a simple, elegant
conceptual framework for unifying these different
aspects of working memory.

Keywords: working memory, precision, decision,
retrieval, response time
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